5 research outputs found

    Utilization of BIM in the construction of a submarine tunnel: a case study in Xiamen city, China

    Get PDF
    Building information modeling (BIM) is an emerging technology that can effectively solve the problems of information dispersion, complex personnel management, and lack of construction supervision, which often occur during the construction of tunnel engineering. Taking the construction of Haicang Tunnel in Xiamen, China as a case study, the utilization of BIM technology in the design stage, the construction simulation and operation are demonstrated during the full-life cycle of the project. During the construction of Haicang Tunnel, the technologies of BIM 3D, BIM 4D, BIM 5D, and Cloud Platform are used to make the construction process controllable and to facilitate the implementation and deployment of construction plans. BIM 3D is a visualization method to show the detailed model in the construction. The design is optimized by the navigation collision function of BIM 3D. BIM 4D adds the time schedule into BIM 3D model to show the construction schedule. BIM 5D adds the cost into BIM 4D model to show the construction consumption. The methods of BIM 4D and BIM 5D can assist the engineering management in allocating resources and funds in the project. Cloud Platform is used to effectively implement information management

    Fenofibrate Metabolism in the Cynomolgus Monkey using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based MetabolomicsS⃞

    No full text
    Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor α. However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate
    corecore